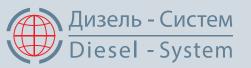


ГАЗОПОРШНЕВЫЕ ЭЛЕКТРОСТАНЦИИ (ГПУ)

- Принцип работы
- Двигатели
- Системы автоматики
- Компоновка
- Критерии выбора

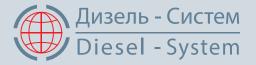
цель: объяснить принцип работы газопоршневой электростанции (ГПУ), познакомить с основным модельным рядом двигателей, систем автоматики их преимуществами, недостатками и критериями выбора для разных задач, на примере работ выполненных ООО Компания «Дизель-Систем»

Введение: Что такое ГПУ и зачем они нужны?

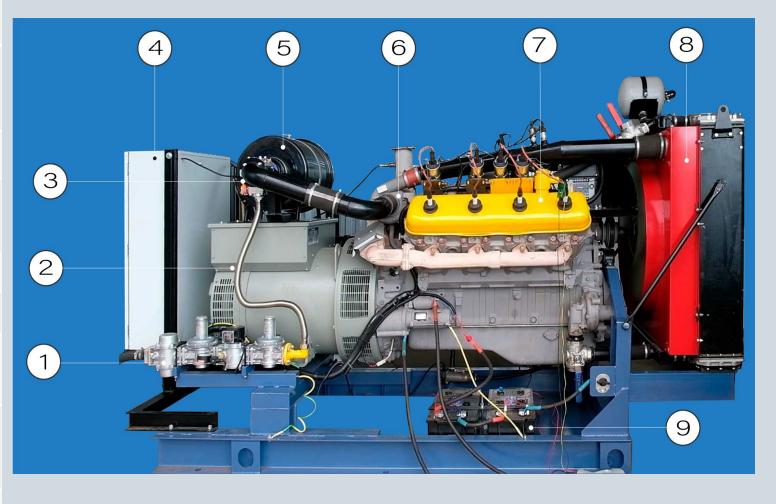

Газопоршневые электростанции (ГПУ) — это устройства, которые преобразуют энергию сгорания газа (природного, попутного, биогаза и других видов газообразного топлива) в механическую энергию вращения, а затем — в электрическую энергию

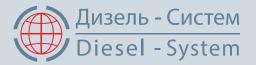
Основные сферы применения:

- Резервное и основное электроснабжения промышленных предприятий, ЦОДов, торговых центров, больниц, жилых комплексов.
- Децентрализованное энергоснабжение в удалённых районах, где отсутствует централизованная электросеть.
- Объекты с потребностью в когенерации (одновременное производство электроэнергии и тепла), например, тепличные комплексы, предприятия пищевой промышленности, ЖКХ.
- Использование попутного нефтяного газа и биогаза на месторождениях, мусороперерабатывающих заводах, фермах.
- В качестве модульных и мобильные электростанций для временных объектов, строительных площадок, мероприятий.


Преимущества газопоршневых электростанций по сравнению с дизельными

Критерий	Газопоршневая электростанция (ГПУ)	Дизельная электростанция
	Более низкая стоимость топлива (газ дешевле дизеля), высокая топливная эффективность	Более высокая стоимость топлива, ниже КПД
БКОЛОГИЯ		Токсичные выбросы, присутствует NO_x , SO_x , сажа, запах.
Ресурс работы	Длительный межсервисный интервал, ресурс до капремонта выше	Меньший ресурс, чаще требуется обслуживание
Шум	Более низкий уровень шума	Более высокий уровень шума
Возможность когенерации	Легко реализуется (электро- и теплоэнергия)	Реализуется сложнее и менее эффективно
и иокость по топливу	Возможность работы на природном, попутном, биогазе и синтез газе	Только дизельное топливо
Запуск и работа	Быстрый запуск, стабильная работа при длительных нагрузках	Быстрый запуск, но менее эффективна при длительной работе
Эксплуатационные расходы	Ниже за счёт дешёвого топлива и меньшего износа	Выше из-за дорогого топлива и частого обслуживания



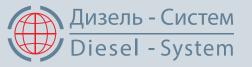

Основные компоненты ГПУ

1	Газовая линейка	Состоит из клапана, фильтра, регулятора и стабилизатора давления. Обеспечивает тонкую фильтрацию и поддерживает постоянное давление газа на входе в ДВС независимо от изменений давления в газовой магистрали. Блокирует подачу газа при отключении электростанции.	
2	Генератор	Бесщёточный, синхронный, трёхфазный электрогенератор, предназначен для выработки электрического тока напряжением 400 В и частотой 50 Гц. Имеет встроенную бесщеточную систему самовозбуждения и автоматическое регулирование напряжения (AVR).	
3	Исполнительный механизм системы управления.	Обеспечивает смешение газа с воздухом, для создания горючей смеси в оптимальной стехиометрической концентрации. Регулирует подачу смеси в ДВС	
4	Шкаф управления	Состоит из микропроцессорного блока управления и блоков коммутации. Обеспечивает автоматическое управление электростанцией, а также параллельную работу с сетью и другими генераторами, автоматический запуск.	
	Воздушный фильтр с воздухозаборником		
5	Воздушный фильтр с	воздухозаборником	
5	Воздушный фильтр с г Турбина	воздухозаборником Сжимает газовоздушную смесь перед подачей в камеры сгорания. Существенно повышает мощность двигателя.	
Н		Сжимает газовоздушную смесь перед подачей в камеры сгорания.	
6	Турбина	Сжимает газовоздушную смесь перед подачей в камеры сгорания. Существенно повышает мощность двигателя. Газопоршневой двигатель, всегда имеет дизельный прототип, переоборудованный для работы на газе, из конструкции которого убрана система подачи топлива с форсунками и топливным насосом высокого	

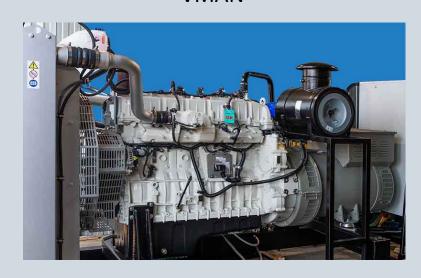
Основные этапы работы газопоршневой электростанции

При запуске ГПУ, система проводит самодиагностику, открывается клапан подачи газа и стабилизируется давление на входе в ДВС.

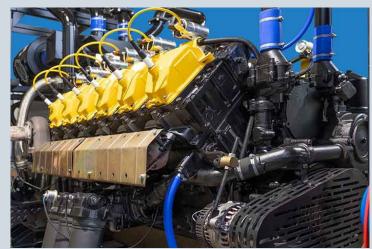
Коленвал двигателя вращается за счёт аккумулятора, в камерах сгорания и во всей магистрали создаёт разряжение, за счёт чего воздух через фильтр попадает в смеситель, где образуется газовоздушная смесь


Газовоздушная смесь поступает в ДВС, в камерах сгорания происходит её сжатие и воспламенение за счёт свечей зажигания, двигатель переходит к четырёхтактному рабочему циклу.

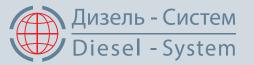
Полученная механическая энергия передается синхронному генератору, который вырабатывает электрический ток, поддерживая стабильное напряжение и частоту.

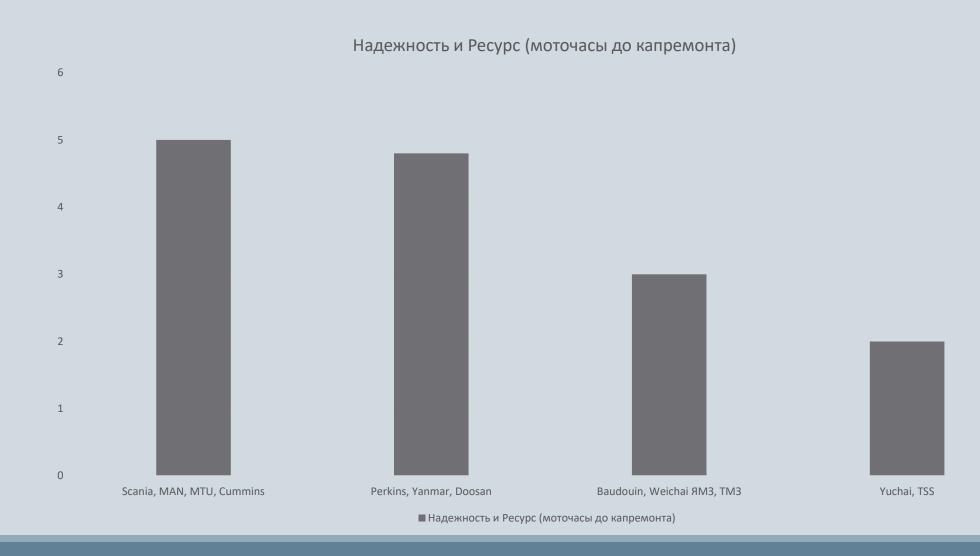

Все двигатели для ГПУ созданы на базе дизельного прототипа в конструкцию которого внесены ряд изменений.

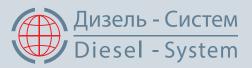
- Убран топливный насос низкого и высокого давления.
- Убраны форсунки подачи топлива в камеры сгорания.
- Добавлены свечи зажигания.
- Подготовка топливной газовоздушной смеси вынесена за пределы двигателя.

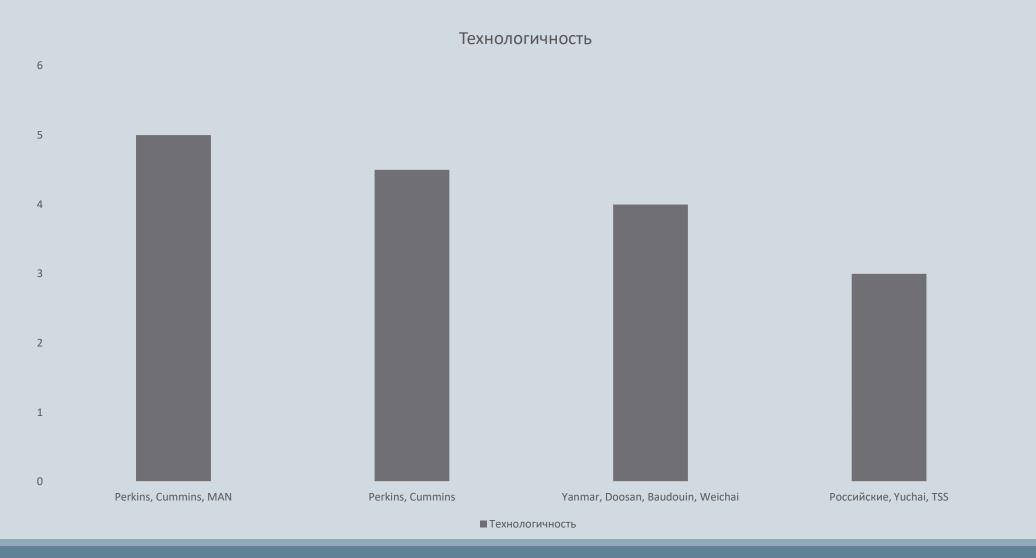

В целом надёжность двигателя, его стоимость и стоимость владения, аналогичны таковым для дизельных двигателей тех же производителей.

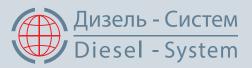
Пример инсталляции различных двигателей в составе газопоршневой электростанции

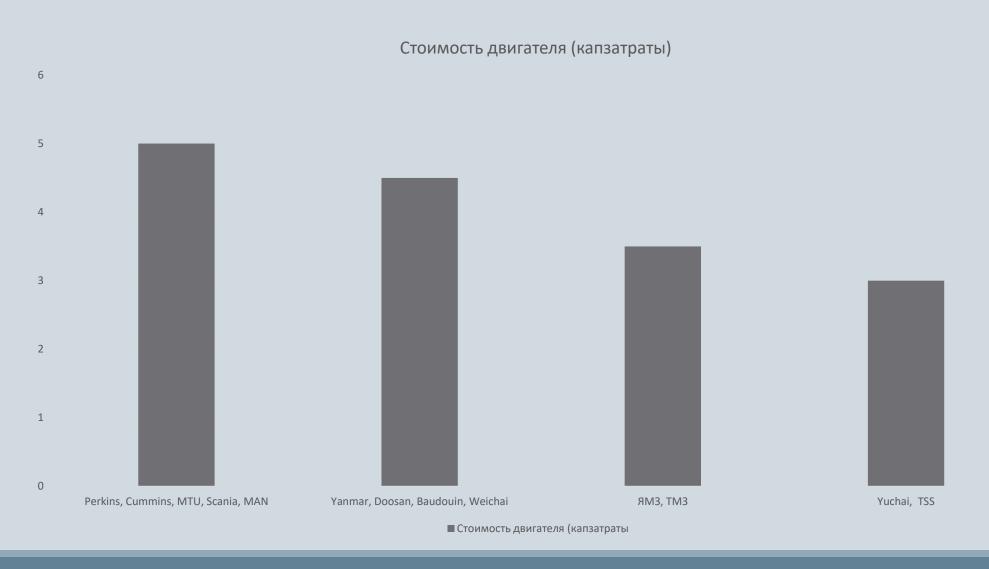

VMAN Baudouin 9M3

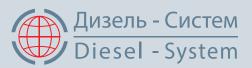


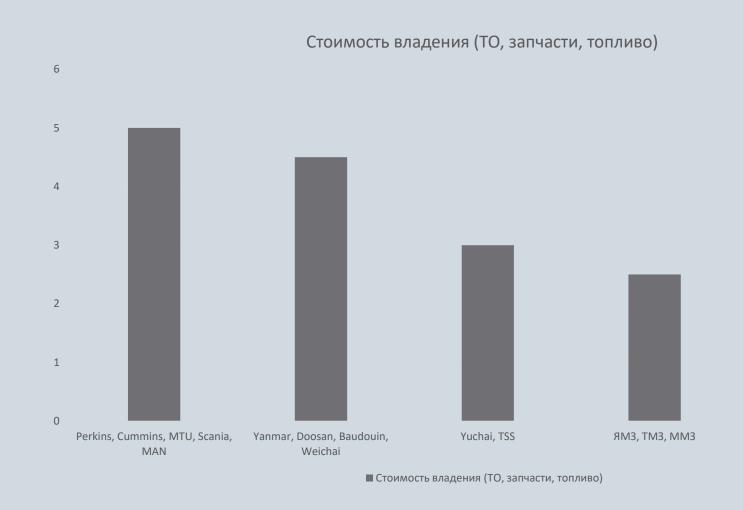

Сравнение различных групп двигателей используемых в ГПУ

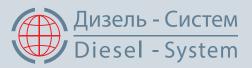


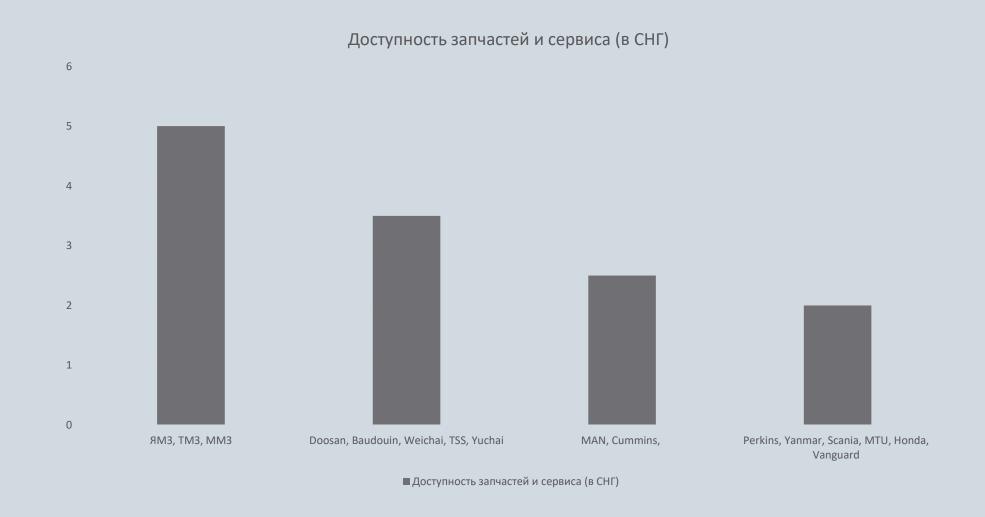

Производители	Достоинства	Недостатки
Cummins, Perkins, MAN: Ведущие Европейские и Американские производители:	Высочайшая надёжность и ресурс. Передовые технологии.	 Крайне высокая цена Отсутствие сервисных центров и легальных путей доставки запчастей и комплектующих на территории России. Собственные блоки управления и закрытое ПО. Невозможно самостоятельно вносить изменение в программное обеспечение электростанции и осуществлять тонкую настройку.
• Baudouin, Yuchai, Weichai, VMAN • и прочие Китайские производители.	Цена приемлемая. Существует целый ряд двигатели высокой мощности (> 600кВт) Относительная доступность запчастей и комплектующих Сборка ряда двигателей локализована на территории РФ (ВЕЙЧАЙ и.т.д) В составе электростанции могут работать с блоками автоматики сторонних производителей.	 Являясь конструктивными аналогами двигателей Cummins, Perkins, MAN и.т.д, существенно уступают им по надёжности и ресурсу. Сложность в ремонте.
ЯМЗ (Ярославль), ТМЗ (Тутаев),	Низкая цена Развитая сервисная сеть в СНГ. Легкодоступность запчастей. Лёгкость ремонта и обслуживания Создание ГПУ под конкретные потребности клиента. Работа на любом горючем газе удовлетворяющим по теплоте сгорания. Работа с различными блоками управления и автоматики.	 По сравнению с зарубежными двигателями: Максимальная мощность электростанции на 1 двигателе 450 кВт КПД несколько ниже Больше расход горючего на выработку 1 кВт электроэнергии. Выше тепловыделение и сложнее реализован теплоотвод, что может быть компенсировано реализацией когенерации.

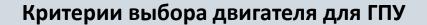


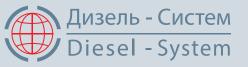


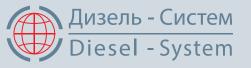


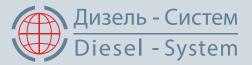












- 1. Назначение ГПУ: Основной / Резервный / Аварийный источник? (Требования к ресурсу, надежности разные).
- 2. Требуемая мощность (кВт/кВА) и режим работы: Постоянная / Длительная / Резервная? Пиковые нагрузки?
- 3. Бюджет: Капзатраты (двигатель) vs Эксплуатационные расходы (ТО, топливо, запчасти)?
- 4. Доступность сервиса и запчастей в регионе: Насколько важен быстрый ремонт?
- 5. Ожидаемый срок поставки?
- 6. Бренд-предпочтения заказчика / Требования тендера.

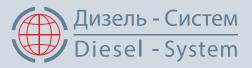
- Выбор двигателя комплексная задача, основанная на технических требованиях, бюджете и условиях эксплуатации. Нет "лучшего двигателя вообще" есть "лучший двигатель для конкретной задачи".
- Мировой рынок предлагает широкий выбор от премиальных (Scania, MAN, MTU) до экономичных решений (Yuchai, Weichai, TSS), с сильными игроками в среднем сегменте (Cummins, Perkins, Yanmar, Doosan, Baudouin) и локальными преимуществами (ЯМЗ, ТМЗ в СНГ).
- Анализ критериев (надежность, цена, сервис, ТО) залог правильного выбора.

Средства автоматизации газопоршневых электростанций

Системы автоматизации условно разделяются на 3 степени:

1 Степень - Работа в островном режиме:

- Электростанция функционирует автономно, без подключения к внешней электросети.
- Контроллер обеспечивает стабильную работу двигателя и генератора в изолированном режиме.
- Основные задачи: поддержание частоты и напряжения, защита оборудования, базовое управление запуском и остановкой.


2 Степень - Наличие автозапуска:

- Добавляется функция автоматического запуска и остановки электростанции по заданным условиям (например, при пропадании или появлении напряжения в сети).
- Система автоматически восстанавливает работу без участия оператора.
- Повышается надёжность и удобство эксплуатации.

3 Степень - Автозапуск, параллельная работа с сетью и другими генераторами:

- Самый продвинутый уровень автоматизации.
- Электростанция способна автоматически запускаться и останавливаться, работать параллельно с внешней сетью и другими генераторами.
- Обеспечивается синхронизация по фазе, частоте и напряжению.
- Управление нагрузкой и распределение мощности между источниками.
- Позволяет создавать гибкие и масштабируемые энергосистемы.

Основные блоки системы автоматики газопоршневых электростанций

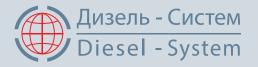
Системы автоматики электростанции состоят из контроллера генераторной установки, регулятора частоты вращения, контроллера зажигания, системы смесеобразования, системы датчиков: кислорода, температуры, давления, детонации

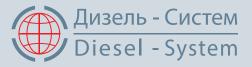
смеситель воздуха и газа с точность регулирования лямбда-показателя менее ±0,01 и быстрый откликом на неустановившуюся нагрузку

электронный регулятор частоты вращения газовых двигателей.

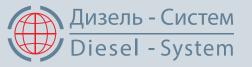
контроллер зажигания формирует высоковольтные импульсы для свечей зажигания

3-фазный автоматический контроллер генераторной установки АМГ, управляет работой генератора с сетью и другими генераторами




dizelsystem@yandex.ru

Основные производители систем автоматизации газопоршневых электростанций


	Профиль	Технологии	Преимущества:
HUEGLI TECH (Швейцария)	Поставляет модульные системы управления для промышленных газовых двигателей — от микроконтроллеров до полного SCADA-решения.	Модули управления смесью (газовые миксеры), дроссели с обратной связью, лямбда-контроллеры, специализированные регуляторы скорости, системы управления и диагностики зажигания, интеграция как с одиночными генераторами, так и с параллельными станциями	Гибкая конфигурация под конкретное оборудование; поддержка двигателей объёмом до 50 литров; Управление двигателями на обеднённых смесях; отличная интеграция SCADA.
ComAp (Чехия)	Мировой лидер среди производителей "умных" контроллеров для дизельных и газопоршневых электростанций, в том числе для когенерации (СНР).	Универсальные контроллеры, внутренний PLC- интерпретатор для кастомизации логики, полный мониторинг и удалённое управление, поддержка параллели по сети и работе в островном режиме	Лёгкая интеграция с большинством типов двигателей; быстрый ввод в эксплуатацию даже в сложных проектах; адаптивная система оповещений и мощная диагностика; крупнейшая база внедрений по всему миру.
MOTORTECH (Германия/Италия)	Специализация на разработке интегрированных систем контроля и управления газопоршневыми двигателями, включая системы зажигания, смесеобразования, детонационного контроля, SCADA и мониторинга.	All-in-one-контроллеры; модули диагностики; датчики детонации; расширенные возможности для работы на бедной смеси; поддержка 32 генераторов в одной системе.	Высокая гибкость индивидуальных решений; широкий модельный ряд для любых типов ГПЭС; удобно интегрируется с различными системами генераторов и движков; онлайн-коммутация и диагностика
Lovato (Италия)	Известна решениями для автоматизации газовых и комбинированных (газ/бензин) двигателей, исторически сильна в автогазе, но есть линейка для стационарных установок	ЭБУ Easy Fast, E-GO II XP, системы прямого управления впрыском, модули газовых инжекторов, гибкие схемы перехода бензин/газ.	Простота внедрения; компактность; особенно востребована на сегменте маломощных и автомобильных ГПЭС, может быть экономичной альтернативой для малых объектов

Ценовой диапазон и рекомендации по применению систем автоматизации

	Ценовой диапазон	Рекомендация по применению
Huegli Tech	Средний	Модульная цена за решения и комплектацию. Универсален, хорошо подходит для стоимостно-эффективной автоматизации разного уровня.
ComAp	Средний – высокий	Выбор для крупных индустриальных проектов, когенерации, сложной логики.
Motortech	Высокий	Для сложных систем, Выбор для крупных индустриальных проектов, когенерации, сложной логики.
Lovato	Бюджетный – средний	оптимален для малых, бюджетных систем, в частности на базе автомобильной газовой электроники.

Когенерация

Когенерация или производство тепловой энергии параллельно с электрической. Общий КПД когенерационной установки может достигать 90%, поскольку используется не только электричество, но и практически всё тепло выхлопных газов и системы охлаждения двигателя.

Когенерация выхлопных газов

В газопоршневом двигателе температура выхлопных газов достигает 450-500 С. Выхлопные газы проходят через специальный теплообменник — котёлутилизатор, через который также циркулирует вода. Вода нагревается теплом выхлопных газов, после чего может быть использована для отопления, горячего водоснабжения или технологических нужд предприятия



Когенерация охлаждающей системы двигателя

Охлаждающая жидкость двигателя с температурой 80-90 С поступает не в радиатор, а через трёхходовой кран в теплообменник жидкость-жидкость, где передаёт тепловую энергию воде, которая в свою очередь может использоваться для отопления, горячего водоснабжения или технологических нужд предприятия

Монтаж газопоршневой электростанции

Установка на раме для размещения в помещении

Минимальная стоимость.

Требует подготовленного, отапливаемого и хорошо вентилируемого помещения, отвечающего СНиП, оборудованного сигнализацией СО, СН4, СО2 и средствами пожаротушения.

Установка в блок контейнере

- Минимальные требования к площадке,
- Быстрый монтаж на месте эксплуатации,
- Полная заводская готовность.
- Лёгкость перемещения станции на другой объект.
- Надёжная защита от воздействия внешних факторов (осадки, ветер, мороз).

ЗАКЛЮЧЕНИЕ

Современная ГПУ — это не просто набор двигателя и генератора, а единая интегрированная система с интеллектуальной автоматикой, обеспечивающая экономичную, надёжную и безопасную работу при любых условиях эксплуатации.

- Подбор газопоршневой электростанции комплексная задача, требующая оценки параметров мощности и типа нагрузки, требований по автоматизации, а также особенностей конкретного объекта (открытая площадка, промышленное здание, удалённость от сетей).
- Оптимальное решение достигается при тесном взаимодействии с производителем и проработке требований к автоматизации, мониторингу и компоновке под ваши задачи.
- Не менее важно проанализировать перспективы развития объекта, чтобы станция имела возможность масштабирования и интеграции в более крупные энергосистемы.